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Meson-Nucleon Coupling Constants in a
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Abstract. An effective vector exchange in a quark model, previously used for
nucleon-antinucleon annihilation and meson decays, is applied to nucleon-
meson and decuplet baryon-meson couplings. A reasonable fit to experimental
data is obtained.

1 Introduction

Mesons are known to be an effective description of nuclear forces at large distances,
whereas QCD is expected to be appropriate for very short distances. A variety of
models have been used to bridge the gap between these extremes; they include bag
models [1], hybrid quark-baryon models [2], and constituent-quark models with
confining potentials [3]. In all of these models the pion couples to the quarks or
nucleon, and sometimes heavier mesons are also included.

If QCD is the basic theory of strong interactions, it should be possible to
calculate the various properties of mesons and nucleons from the theory. However,
this is a difficult and presently almost impossible task, except via numerical tech-
niques. For this reason, models have been used to bridge the gap between quarks
and hadrons. In previous work we have shown that an effective coloured vector-
exchange scheme together with a nonrelativistic constituent-quark model may be
used to obtain some hadronic reaction properties. In particular, we have examined
the two-meson annihilation of nucleons with antinucleons [4] and the decays of
pseudoscalar and vector bosons [5] in this model. Here we apply the model to some
allowed baryonic decays and meson-nucleon coupling constants. It should be noted
that the pion is treated as a quark-antiquark object, a description which has been
found to be reasonable [6]. Neither this assumption nor our model are, of course,
unique. Competing models exist [7]. For instance, it has also been proposed that
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the pion is a Goldstone boson, a collective state, or may have properties of combina-
tions of these models [8]. However, we develop the effective coloured vector-
exchange model in order to determine its successes and inadequacies.

It should be noted that our model is a nonrelativistic one. This approximation
continues to be useful in nucleon structure calculations [3] but can certainly be
questioned, since the quark mass and its momentumare both about the same order
of magnitude. Nevertheless, we expect that the nonrelativistic approach gives a
result that is accurate to about 25%, which is not so different from the accuracy of
other approaches. For instance, the meson-nucleon coupling constants have been
calculated in a chiral soliton model [9]; this approach is valid to leading order in
l/Nc, where Nc is the number of colours, and therefore to about 30%. Recently, a
number of relativistic approaches have been proposed for mesons, but we have not
implemented them here; they are much more complex and make it more difficult to
get deeper physical insights [10].

2 Theory
In our model, the basic diagram responsible for the baryon-baryon-meson coupling
is q -> qqq as shown in Fig. 1. We use a nonrelativistic reduction of the matrix
element associated with Fig. 1. The matrix element up to first order of momenta is
given by [4, 5]

Vij(q, Pi) = -g,
      2k'h                <jj-q

       co2
q~q2\

                   +-]-
                                m.

                idjxffj-q Vj-Pi~]

                  2á"i  mi J'
(1)

where q = pt - p 'h a)q = Ep. - £p;, (7;(m;) is the spin (constituent mass) of quark i, gs

is the strong coupling constant and I; •E A,-/4 is the colour factor.

 For the vector propagator, which can be thought of as one, or more, correlated
gluons, we consider two extreme cases: (Case A) we neglect the energy transferred
by the vector, i.e. coq ~ 0, and (Case B) we neglect the three-momentum, q, transferred
by the vector and make the approximation coq = constant ~ 2m,-. For the quark
wave functions of low-lying baryons and mesons we use the SU{6) basis with ground
states of orbital angular momentum = 0, i.e., S-states. The baryon and meson wave

functions with momenta P and q, respectively, are

    MP) = Q
-^§^Kb^,b*c,b,    (2a)

Fig. 1. The basic diagram responsible for the baryon-baryon-meson
interaction in the effective coloured vector-particle exchange approxi-

mation
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and

M?) = SXP2^4 'Ao.m'Asi.m'Acm> (3a)

where i? (.R') is the cm. coordinate of the baryon (meson), and \j/SI B (iAsi.m) and ^c,b
(•EAc m) are the spin-isospin (flavour) and colour wave functions of the baryon
(meson), respectively. The baryon and meson spatial wave functions t^0)B and i^0>M

are

exp L 2b2J
<Ao,b(£ n) =

( Ji b)3
(2b)

and

exp [-M
ML) =1J^' <3b)

where b and bmare the harmonic-oscillator parameters for the baryon and meson,
respectively. Here £, if, and ^1 are the relative coordinates; see also Eq. (4).

Weevaluate the baryon-baryon-meson interaction matrix element for the case
shown in Fig. 2. Basically there are two types of diagrams, Fig. 2a, the "direct"
diagram, and Fig. 2 b, the "exchange" diagram.

The calculation of the matrix element is straightforward, and separates into
space, spin-isospin, and colour matrix elements. The spatial matrix element takes
the form

23/433/2 d*l d*2 d*l d*4

[,P-(X1+X2+X3)~| r .-Plå (*1+^2+X4)
e xp L ' -ICApI -

3
> \ /

X3~XA
X e

xp [..SBrtBJ]*,!
. /2 J l

w 0,M

3 a i ;Ai A-o Ai ~~\~A2 ^A3
x »(r=x£-X4,Xj)^o.«(: = 2), (4)

1L x/0

where P, P^ , and P2 are the three momenta of the initial baryon, final baryon and
meson, respectively (see Fig. 2). In Eq. (4) the interaction v(f = xt - 3c4,xt) is

v
Hf-x-x x)- toeXrX**UB*i ^4 fixB\r 2(vv*il

o(r-x, x4>xfj- z«s 4 2r|_^m.+m4 * m. ^r2 m. J>

(5 a)

. .B«
.<VrX,-X4 ^[Yff4 ?4 iff;xa4

v

\r=xt-a4,xt)=i^j -<>\r)\ \
2 ml 4 -'LV*. m * m;

( V», + V, (5b)



78 E. M. Henley et al.

     (a)            (b)

Fig. 2. The baryon-baryon-meson interaction; a is the "direct" diagram and b is the "exchange" one

for cases A and B, respectively, where i = 3 and 2 for Figs. 2a and b, respectively,
as = g2
s/Aii and Vx. (Vx.) acts on the initial- (final-) state wave function. The firstparenthesis in Eqs. (5) is the local contribution whereas the last term is the momentum-
dependent or nonlocal one. In the plane-wave terms of Eq. (4) we neglect the quark
mass difference for simplicity. This neglect is justified for the case of up and down
quarks and accurate to about 10% with the inclusion of a strange quark.

 Performing integrations in Eq. (4), we obtain

          m = (2n)35(P - P1 - P2)J?,         (6)

dir =a.
['1 . 1 I _

i^i j1j « Ai j t i^j v. å **å o/) ~r

m,

*4' G

m.
^ 4,d > (7 a)

and

f exch "-s "
4 Avn i a .n y

,| n.e q^.lj6-r L2,e

a A-q X ..+
Q

xd
m, m,

-]•E (7 b)

where q=P-P1 =P2 and Q=P+Pt. In Eqs. (7), the terms from the local
interaction are Ad and Ae, with

and

m 3
^

=-+--i
04

m 4

ffa X ffj.

m.

m
2 w4 m2

x a.

(8 a)

(8 b)

The results for Yd, XUi to X4td and Ye, XUe to X4>e are given in Appendix A.
The colour factor is (see Fig. 2)

A^å Ai\

for the direct diagram, and

i3"1-4

4

/L•EAa

3./3

3^3 '

(9 a)

(9 b)
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Table 1. The spin-isospin factor for NNn and
NNri interactions for direct and exchange dia-

grams

A'

N N n D irect - 5/6 5/3

E x ch an g e - 5/3 0

N N n D irect 1 -¥ 3 l/>/ 3

E x ch an g e - 1/x/ 3 0

Table 2. The spin-isospin factor for NNp and NNco
interactions for direct and exchange diagrams

B C B' C

NNp Direct - \ f - 1 0
Exchange - 1 f - f - 5

NNco Direct - f \ - 3 0
Exchange -3 1 2 1

for the exchange diagram. The spin-isospin factor is found to be

<^s-iI^4•Ek\iAs-i> = AaN-k, (10a)

<»As-jI-iff, x?4•Efc|i/>s-/> = -4'ffw'fe» (10b)

for the nucleon-pseudoscalar-meson interaction, and

<«As-/1°*å £I<As-/> = #fc•Ee + C(-iffw x fe)•Ee, (10c)

<^s-j|(-iffi x ff4)-£|^s_/> = 5'/c-e + C(-iaN x k)-s, (10d)

for the nucleon-vector-meson interaction. Here k is an arbitrary three-momentum
vector aN and e are the spin operator for the nucleon and the polarization of the
vector meson, respectively. The values for A and A' are listed in Table 1 for the
nucleon-pion (NNn) and nucleon-eta (NNrj) cases. Table 2 shows the values of B,
B', C, and C for the nucleon-rho (NNp) and nucleon-omega (NNco) interactions.
The isospin wave function of the co used here is co = (uu + dd)/y/2, since the ^-meson
is pure (or almost pure) ss. The r\ and r\', on the other hand are almost pure octet and
singlet, so that the isospin-zero combination is (mm + dd)/^/2 = rj/y/3 + ^/lri'/y/3.

Because the s quark does not contribute, the effective part ofrj is "^" = (mm+ dd)/yJ6.

3 Results

With the results of the spatial integrals from Eq. (7), the colour factors of Eq. (9),
and the spin-isospin matrices of Eq. (10), one obtains the following NNn and NNq
interactions in an arbitrary frame of reference,
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&NNn- ~as
9./Tm

J^laN-q{YdX3>d - Ye(2XUe + X3J}

+ oN-Q{YdXA<d - Ye(2X2,e + X4J}1t-</>, (ll a)

+ oN-Q{YdX^d - Ye(2X2,e + X4,J}], (li b)

where mis the quark mass of the up and down quarks and En, £ are the energies
of the pion and eta meson. We take m=330 MeV and £ «mn, En=mn for
comparison with experimental data.

The interactions are given by

i*W =igmt.fosi+i ^ ^ti- tf' h (12a)

and

V....=in i//i).i///A?^ -
2 M

2mn=V^ihsM * l^W°vt> (12b)

where M is the nucleon mass.
Weuse the leading nonrelativistic (static) approximation to get the approximate

second equality in Eqs. (12). The experimental value of \gNNJ/(2M) is

!^J = 7.14 x 1(T3 MeV"1, (13)
2M

which is obtained from |0jvjvJ2/(47i:) = 14.3 (ref. [11]).

Table 3. The values of as required to fit the NNn vertex for cases A and B. Also shown are the ratios
of the (ffNå 0-contribution to that of aN•Eq, of the exchange diagram to the direct one in SNå q, and
of the nonlocal term to the local one in ay-q iot cases A and B, where higher powers of Q and q
are neglected

fc (fm ) 0 .4 0 .6 0 .6 0 .8 0 .8 0 .8

b m (fm ) 0 .4 0 .4 0 .6 0 .4 0 .6 0 .8

C a se A ｫ s 2 .3 1 .8 1 .8 1 .7 1 .5 1 .6

< <v e >

< -w >
- 0 .0 9 6 0 .0 1 1 - 0 .0 9 6 0 . 0 7 9 - 0 .0 1 9 - 0 .0 9 6

E x c h a n g e c o n trib u tio n
0 .1 5 0 .1 2 0 .1 5 0 .1 0 0 .1 3 0 .1 5

D ire c t c o n tr ib u tio n

N o n lo c a l c o n tri b u tio n
3 .7 4 .1 3 .7 4 .9 4 .0 3 .7

L o c a l c o n tri b u tio n

C a s e B ｫ s 3 .9 4 .5 7 .3 4 .9 7 .9 l l

< ? ｻ ｰ G >

< o W >
0 .0 4 3 0 .1 5 0 .0 4 3 0 .2 2 0 .1 2 0 .0 4 3

E x c h a n g e c o n tr ib u tio n
0 .4 1 0 . 2 4 0 .4 1 0 .1 4 0 .2 9 0 .4 1

D ir ec t c o n trib u tio n

N o n lo c a l c o n trib u tio n
1 .1 2 .0 1 .1 3 .8 1 .6 1.1

Local contribution 蝣 蝣
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In Table 3 the values of as consistent with experiment, Eq. (13), are listed for
various sizes ofb and bm. In the comparison ofEq. (ll a) with Eq. (12a) we use only
the term proportional to aå q. The ratios of the coefficients of the aN•EQ to the aN•Eq
terms, of the exchange diagram to the direct one in the BN å q term, and of the nonlocal
term to the local one in the aNå q term, are also shown in Table 3.

The experimental ratio of \gNNn/gNNn\ is [1 1]

9nNij

9nn-k
0.55 (14)

uaiiicu iium \yNNn\

o ur calculation we obtain for the ratio
with an error of about 20%, and is obtained from \gNNn\2/(4n) « 4.3 (ref. [11]). In

9NNn

Qnn-k
^~0.69, (15)

independent of the choice of b and bm.
The NNp and NNco interactions are also obtained and can be expressed as

&nnp=F?IQ+(1 +F£){-0N x q)+R{q+R?2(-iaN x 0]vj5a, (16a)

&NNa>=F?IQ+(1+F%){-ioNx q)+R»q+R»(-iaN x Q)-<o. (16b)

The effective NNp and NNco interactions are given by

'

{Q+(l +Hp)(-itN x q)K-px! (17a)
n

2M2M

^ NNco~0NNtMy^^KAVr]pr wco"

9nn<o
'2M {Q+(1 +nJ(-ieN x q)}-co, (17b)

where weuse the nonrelativistic approximation of the space components to get the
second equality on the right-hand side. The experimental values of gNNp/2M and np
are[11]

9 nn,
El-i\ a-a-nn v m-3im^v-1VJ..-r _i_ (18 a)

(18 b)

2M

HP =* 6.1 +0.6,

where \gNsP\2/(^n) = 0.55 + 0.06 is used. The experimental values of gNN(a and /j,m
are not known as well [11],

l ^iVivJ
=(46+73\ x 10-3MrV

2M

fim= -0.3to 1.1,

/•E-I (19 a)

(19b)

where \gNNco\ /(4te) = 6 + 3 is used.
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The values of as which fit the central value ofEqs. (18 a) and (19a) are shown in
Tables 4 and 5, respectively; so are F2 , R1 , R2, the ratio of exchange to direct diagram
in F± and F2, and the ratio of the nonlocal term to the local one.

The coupling constants for the pion to the decuplet (S = f) and octet (S = \) are
directly related to the decay rates. Next, we thus examine the pionic decays of
jp = f+ baryons: A++ -åºPn+,E*+ -åºStc, and H*° ->En. In the rest frame of the
initial baryon, the matrix elements for these decays can be written as

^dir 4- *<*-t-'aL^d ~~A4,dJ >
-> -»å 

(20 a)

(20 b)

r ±i__ j: a i 1 a: _ »-,.•E, +;å ,, !,, ,;+!•E> 1 .13 . 3
lur me uneui a.nu CAUiiaiige uia.gia.iiis, icspcuuvciy, wiui a2"a4 ~ -2^ The
matrix element in Eqs. (20) is given for the decay of an S = Sz = § state to an S =
Sz = \baryonandamesonofmomentumqwithcomponentq+ = -(qx + iqy)/y/2.

The coefficients Cg, au and a2 are given in Table 6. The decay rate in the rest
frame of the decaying particle is given by

Table 4a. The values of as, Ff, R1, and R§ for the NNp vertex are given for case A. The ratios of the
contributions from the exchange diagram to the direct one and nonlocal term to the local one are also
listed

b (fm )               0 .4 0 .6 0 .6 0 .8 0 .8 0 .8

6 ^ (fi n )              0 .4 0 .4 0 .6 0 .4 0 .6 0 .8

1 .1 1 .4 0 .9 2 1 .9 1.0 0 .8 0

4 .9 8 .1 4 .9 1 3 6 .9 4 .9

K ?                  - 3 .9 - 5 .9 - 3 .9 - 8 .9 - 5 .2 - 3 .9

m                - 1 .2 - 0 .8 4 - 1 .2 - 0 .3 3 - 0 .9 7 - 1 .1

E x c h a n g e I n te r m oc g    - 1 5 - 4 .3 - 1 5 - 2 .7 - 5 .6 - 1 5

D ire c t  In te r m oc - ia x q   0 .1 2 0 .1 0 0 .1 2 0 .0 8 2 0 .l l 0 .12

N o n lo c a l In te r m cc Q      1 .0 0 .0 6 7 1 .0 - 0 .3 6 0 . 2 9 1 .0

L o c a l  In t er m oc - ia x q   4 .1 4 .6 4 .1 5 .4 4 .4 4 .1

Table 4b. Same as for Table 4a, but for case B
蝣 I

6 ( fm )               0 .4 0 .6 0 .6 0 .8 0 .8 0 .8

. ( fi n )              0 .4 0 .4 0 .6 0 .4 0 .6 0 .8

1 .4 1 .7 2 . 5 1 .9 2 .9 3 .9

3 .0 3 .3 3 .0 3 .6 3 .2 3 .0

R {               - 2 .9 - 3 .0 - 2 .9 - 3 .0 - 3 .0 - 2 .9

R "-,                 - 0 . 8 5 - 0 . 5 3 - 0 . 8 5 - 0 .3 3 - 0 .6 2 - 0 .8 5

E x c h a n g e  I n t e r m o c Q      0 .6 8 0 . 3 8 0 .6 8 0 . 2 2 0 .4 6 0 .6 8

D ir e c t  I n t e r m o c - ia x q   0 .3 4 0 .2 0 0 .3 4 0 . l l 0 . 2 4 0 .3 4

N o n l o c a l  I n t e r m o c Q      0 .1 6 - 0 .2 4 0 .1 6 - 0 . 3 7 - 0 . 1 6 0 . 1 6

L o c a l   I n t e r m o c - ia x a    1 .2 2 .3 1 .2 4 .2 1 .8 1 .2
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Table 5a. Same as Table 4 a, but for NNco coupling; case A

83

(fi n ) 0 .4 0 .6 0 .6 0 .8 0 .8 0 .8

.  (fi n ) 0 .4 0 .4 0 .6 0 .4 0 .6 0 .8

ｫ s 1 . 1 1 .4 0 .9 1 1 .9 1 .0 0 .7 9

F ? 0 .2 1 0 .8 8 0 .2 1 1 . 8 0 .6 3 0 .2 1

R ? - 3 . 1 - 4 .8 - 3 . 1 - 7 .4 - 4 . 1 - 3 .1

K ? - 0 . 1 9 - 0 .1 3 - 0 . 1 9 -  0 .0 4 3 - 0 . 1 5 - 0 .1 9

E x c h a n g e I n  t e r m  o c  Q - 1 7 - 4 .6 - 1 7 - 2 .8 - 6 .0 1 7

D ir e c t I n t e r m o c  - i d  x  q 0 .2 7 0 .2 3 0 .2 7 0 . 1 9 0 .2 4 0 .2 7

N o n lo c a l I n  t e r m  o c  Q 0 .8 4 0 .0 6 2 0 .8 4 - 0 . 3 4 0 .2 6 0 .8 4

L o c a l I n t e r m o c  - i a  x  a 2 .4 2 .8 2 .4 3 .2 2 .6 2 .4

Table 5b. Same as Table 4b, but for NNco; case B

6  (fm ) 0 .4 0 .6 0 .6 0 .8 0 .8 0 .8

U fi n ) 0 .4 0 .4 0 .6 0 .4 0 .6 0 .8

<* s 1 .3 1 .7 2 .4 2 .0 2 .9 3 .6

F ? - 0 .1 0 - 0 .0 1 7 - 0 .1 0 0 .0 0 6 4 - 0 .0 3 5 - 0 . 1 0

R f - 1 .8 - 2 .3 - 1 .8 - 2 . 5 - 2 . 1 - 1 .8

m - 0 .1 0 - 0 .0 8 2 - 0 .1 0 -  0 .0 5 6 - 0 .0 9 1 - 0 . 1 0

E x c h a n g e I n  t e r m  o c  Q 0 .9 6 0 .4 7 0 .9 6 0 .2 5 0 .5 9 0 .9 6

D i r e c t I n t e r m o c  - ia  x  a 0 .7 5 0 .4 5 0 .7 5 0 .2 6 0 .5 4 0 .7 5

N o n lo c a l I n  t e r m  o c  Q 0 .1 3 - 0 .2 3 0 . 1 3 - 0 .3 7 - 0 . 1 5 0 . 1 3

L o c a l I n t e r m o c  - iS x  a 0 .7 1 1 .4 0 .7 1 2 .5 1 . 1 0 .7 1

Table 6. Coefficients Cg, au and a2 for (Jp = f+)-baryon pionic decays:
A++ ->Nn, S*+ ^ Sti and An, and E*° ^H7c. The experimental partial

widths are also shown. The parameter r denotes r = m/ms

E xp erim en t a l

p artial w id th [17]

(M eV )

A + + (123 2) - > N n 1 14 + 5

S * + (138 5) - > 2 tc 4 .3 + 0 .8

S * + (138 5) - > A n 3 2 + 2

3 * 0(153 0) - > E tc 9.1 + 0 .5

c. «1

">/2

-1
1

f-3
2-r

2
1+r
1+r
2r

r=
diir+ s exch qEN

2%M
å 2En, (21)

where q, EN, and M are the momentum of the pion, the energy of the baryon, and
the mass of the decaying particle, respectively. The factor of 3 arises because
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Table 7. Table of as for the pionic decays of A++, S*+, and H*°. The

central values of the experimental partial widths are used

b (f m ) 0 .4 0 .6 0 .6 0 .8 0 . 8 0 . 8

b m (fm ) 0 .4 0 .4 0 .6 0 .4 0 . 6 0 .8

C a s e A N n 2 .2 2 .0 1 .9 2 . 1 1 .8 1 .7

E tc 2 .2 2 .0 1 .9 2 .0 1 .7 1 .6

A n 2 .0 1 .8 1 .7 1 .9 1 .6 1 .5

.7 7 * 0 7 7-. 1 . 8 1 .6 1 .5 1 .6 1 .4 1 .4

C a s e B A + + - >蝣 N n 5 . 5 7 .0 l l 8 . 1 1 3 1 7

T .H 5 . 5 6 .6 1 0 7 .2 1 2 1 6

A te 4 .9 6 .0 9 .3 6 .9 l l 1 5

・= ・* ｻ _ = 4 .2 5 .0 7 .9 5 .6 9 .1 1 2

<|g+ 12> = q2/3. The values of as extracted from the central values of the decay widths
are listed in Table 7.

4 Discussion

There are a number of general observations to be made about the results presented
in Tables 3 to 5.

Webelieve that case A may be closer to the truth than case B. In the nucleon-
nucleon force or other potential models, which involve meson exchanges, the meson
carries only three-momentum but no energy. Thus, the three-momentum of the
exchanged vector is likely to be more important than the energy, and this corre-
sponds to model A.

The values of as obtained for scheme A are relatively independent of the radii
chosen for the nucleon and meson. They are somewhat more dependent on the
choice of radii for case B. The values obtained are quite reasonable and compare
favourably to those obtained in NN annihilation and meson decays [4, 5]. The
values ofa5 for the a> and p are smaller by about a factor 2 than those for the n and
r\ except for b =0.8 fm, bm=0.4 fm and b =0.6 fm, bm=0.4 fm, when they are
almost equal. We cannot easily account for the large variation of as in going from
pseudoscalar to vector mesons for other cases of b and bm.

The values of as found for the pionic decays of the decuplet, e.g. A, are very
similar to those deduced for the NNit coupling constant. They show only a small
dependence on radii and are almost independent of the decaying particle. The slight
variation of as with the mass of the decaying particle is approximately what might
be expected from the momentum dependence of as (ref. [4]). The value of a5 is
insensitive to the mass of the s-quark. The values are almost identical for ms = 510
and 580 MeV.

The meson-nucleon couplings include recoil corrections. For instance, the pion-
nucleon interaction not only has a local nucleon term, proportional to q, but also
a nonlocal term proportional to Q. The latter is a recoil term and is of the order of
magnitude and sign expected for a Galilean invariant pion-nucleon coupling [12].
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In this case, the interaction, Eqs. (ll), should only depend on the relative velocity
between the pion and nucleon in the nonrelativistic limit or it should be proportional
to1

JSW oc <tw-(« - |^g). (22)

Since the ratio mJ2M is of the order of 1/14 it is quite small, as found in our work.
The correction for the?j-meson is the same, so that it is the average pseudoscalar-
meson mass which should appear in Eq. (22). In the case of the vector mesons,
the ratio of term proportional to q relative to that proportional to Q should be
-2M/mp « -2.4. Both the order of magnitude and sign of R are approximately
correct. The same holds for R2, which should be « - 1/2.4, as observed from Tables
4 and 5. Both the sign and magnitude agree with the result outlined in Tables 5 and
6 for the vector mesons. For the pion the magnitude is correct, but the sign varies
with radius. This change comes from other recoil corrections included in our model.

It is well known that there is no unique definition of a meson-nucleon coupling
constant. Thus, it is not surprising that the magnitude of the coupling constants we
obtain depend on the frame of reference. For instance, the nonrelativistic approxi-
mation for the nucleons is satisfied most closely in the Breit frame, where both the
initial and final nucleon have momenta equal in magnitude to half that of the meson,
\q/2\. In this frame the valuej)f Q vanishes. On the other hand, for an initial baryon
at rest, the magnitudes of Q and q are equal to each other. We have chosen an
arbitrary frame of reference by keeping recoil terms, but make the comparison with
experimentally determined coupling constants by means of the "leading" terms,
alone.

The ratios of the exchange to direct-diagram contributions shown in the various
tables are primarily useful as an aid to the reader. On the other hand, the ratio of
the nonlocal to local term is shown because some authors neglect the velocity-
dependent term in the basic process [13], Fig. 1 and Eq. (1). In general, the
contribution of the velocity-dependent term is found to be large and often larger
than the static (local) one. We believe that it is important to include this nonlocality
as we argued earlier [4]. Although not shown in the table for the decays of the
decuplet baryons, the ratio of the nonlocal to local contribution is much larger than
unity (~ 20 for case A and ~ 6 for case B).

The magnetic coupling of the p-meson to the nucleon is given by the isovector
anomalous magnetic moment, 3.7, in the vector-dominance model, but it has been
argued that its value is a factor of approximately 2 larger [14]. Our value of F2 is
nearer to the latter value than to the former for case.A, but is closer to the isovector
magnetic moment in case B. The isoscalar magnetic coupling, F2 , for the co meson
is found to be appropriately small for both cases A and B. Tables 4 and 5 show that
this ratio is independent of radius if b = bM, because itjdepends only on t =
bjb. Indeed, it is found that most ratios such as (BN-Qy/(aN-qy, (exchange
contribution>/<direct contribution), F2, Rl9 R2, etc. depend only on t = bjb, and
therefore are identical for all values of bm = b.

It may be more appropriate to replace mKby the energy of the pion, En, since the pion is treated
relativistically. See, e.g., ref. [12]
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Finally, we can compare our work to that of Yu and Zhang [15]. They use a
different vector-particle propagator than we do, but obtain reasonable fits to meson-
nucleon coupling constants with parameters (e.g., as) similar to ours. They choose
a definite frame of reference, namely the laboratory frame for the initial baryon and
omit recoil corrections as such. Our model has been used to investigate the charge
dependence of the nucleon-isospin unity meson vertices [16].

Appendix A

Defining relations for Yd, Xld to Xid and Ye, Xu to XAe,

yd-3{3 +2f2}eXPL ~6~_|'

*!.,=(>,

X2,d=f2(u),

x3,, =-i8/»,

2h2l
Ye= -texp| -'-

"*J

27/4 33/2^1/^1/2

(3 + 2t2)3'2

Xi"~W

1(. 1
X 2.e=: i--A
_1(, ^

V 3,e ' -I'-75/.M A •Eå v

1 / 10
-I-4( 1--in\
i.i \ ix n

for case A and

* ,.-^(-*-f+-). (A.1)

Yj-å 
m l bS2

-

exp [ - q2b2l

X3,d = 2,

*4,d=f,

25/4 3 3/2^3

mlb^tT
_ 1 a*

Xue~2~2T'

-*2,e - 7"'
'2

Y=- e

xp
fqVl f3b£Q q\2l
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x 3 =-i+*
3'e 2 2t2'

x -l 5t2
(A.2)

for case B. In these equations we use t = bjb, tt = J(> + 7^/(^/2^/3 + 2t2) and t2 = 6 + It2. The

functions /i («), /2(«), and /3(m) are

fM=~ dxe~x2sm(ux),
uJo

"Jo
fi{u)=7. I dxe x2Ji(ux)'

"Jo
/ 3(u)=^ I dxe x\2jy(ux), (A.3)

where u = QbJ-J3(3 + It1). In the limit ofu -*å 0 the functions fu f2 and f3 approach unity. In these

equations the same value of b is used for the initial and final baryons.
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