ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要類・刊行物等
  2. 広島文化学園短期大学
  3. 広島文化学園短期大学紀要 第54巻

データサイエンス教育に関するいくつかの提言――データサイエンスとマイ・ティーチング・ポートフォリオの対比から――

https://doi.org/10.60171/00003077
https://doi.org/10.60171/00003077
bc103b79-e549-4947-8415-c2a384c991a6
名前 / ファイル ライセンス アクション
54-02.pdf 54-02.pdf (507.4 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2023-03-15
タイトル
タイトル データサイエンス教育に関するいくつかの提言――データサイエンスとマイ・ティーチング・ポートフォリオの対比から――
言語 ja
タイトル
タイトル Some Suggestions of the Data Processing―― From the Contrast between the Data Science and My Teaching Portfolio
言語 en
言語
言語 jpn
キーワード
主題Scheme Other
主題 AI Artificial Intelligence
キーワード
主題Scheme Other
主題 データサイエンス Data Science
キーワード
主題Scheme Other
主題 データサイエンティスト Data Sicientist
キーワード
主題Scheme Other
主題 マイ・ティーチング・ポートフォリオ My Teaching Portforio
キーワード
主題Scheme Other
主題 ビッグデータ Big Data
キーワード
主題Scheme Other
主題 自己点検 Self-Inspection
キーワード
主題Scheme Other
主題 第三者評価 Third Party Eevaluation
キーワード
主題Scheme Other
主題 PDCA Plan-Do-Check-Action
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
ID登録
ID登録 10.60171/00003077
ID登録タイプ JaLC
著者 古川, 博仁

× 古川, 博仁

ja 古川, 博仁

Search repository
Furukawa, Hirohito

× Furukawa, Hirohito

en Furukawa, Hirohito

Search repository
抄録
内容記述タイプ Abstract
内容記述 The Information-related subjects in charge by the author were just subjects that was popular at that time in the area of information technology innovation in university education,and I couldn't get a bird's eye view of the future direction of the curriculum based on the "Principles of Data Science" presented in 1974.
For the author, it is able to be regarded a regional revitalization study targeting a local government called Kure City to take in data from the Internet and analyze it over a year over the "vacant house problem" in 2014 as the research close to data science. It spent a considerable amount of time to select valid attributes from source data fetched from the Internet. Also, machine learning was not performed here.
Data science is as long as science, it has two sides: a deductive method, that is systematic consistency based on logical reasoning and an inductive method, that is empirical demonstrability based on experiments and observations.
Data scientists were able to be said that they have cultivated cultivate the two-sided background.
From a deductive standpoint, in the field of data science, especially in the field of computer science, data scientists need the ability to find algorithms from theory and program them.
When the Internet becomes widespread and handles data that serves its purpose, the provider should clearly indicate the accuracy or reliability of the data. In data analysis by fieldwork, it is normal to perform modeling to capture the phenomenon and deepen the understanding of the phenomenon. In an inductive method, such a method is essential for big data analysis.
There are many "basic researches" that ignore actual interests and silently accumulate research. If data science is for profit, such efforts tend to be shunned. I think this is the turning point between data science and "basic research.”
If the main focus is on actual profits, I think it is preferable to call data engineering rather than the term data science.
Data science is mainly responsible for scientifically analyzing the data of the DC part of turning PDCA, which is indispensable for the administration of individual organizations.
Data science has the role of scientifically analyzing the data of the DC part mainly in order to turn PDCA, which is indispensable for the administration of individual organizations. Organizations that handle big data provide evidence to ensure its public nature, regularly prepare reports for self-inspection and are necessary to undergo mutual evaluation by a third-party evaluator or between peers. I suggest that the certifications qualified there should be published to society.
In education and literacy, I propose to students. Students should learn the PDCA cycle of the organization, and how to realize data science as they turn the PDCA cycle to achieve the purpose of the organization.
It is essential for them to be educated from the perspective of what mutual evaluation should be.
書誌情報 広島文化学園短期大学紀要

巻 54, p. 9-18, 発行日 2021-12-25
出版者
出版者 広島文化学園短期大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 18846769
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12454339
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:55:38.603990
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3