Item type |
一般雑誌記事 / Article(1) |
公開日 |
2023-03-15 |
タイトル |
|
|
タイトル |
Application of neural networks for the analysis of gamma-ray spectra measured with a Ge spectrometer |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
Gamma-ray spectrometr |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
Neural network |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
Radioisotope identification |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
article |
著者 |
Yoshida, Eiji
Shizuma, Kiyoshi
Endo, Satoru
Oka, Takamitsu
Yoshida, Eiji
Shizuma, Kiyoshi
Endo, Satoru
Oka, Takamitsu
|
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
The analysis of gamma-ray spectra to identify lines and their intensities usually requires expert knowledge and timeconsuming calculations with complex fitting functions. A neural network algorithm can be applied to a gamma-ray spectral analysis owing to its excellent pattern recognition characteristics. However, a gamma-ray spectrum typically having 4096 channels is too large as a typical input data size for a neural network. We show that by applying a suitable peak search procedure, gamma-ray data can be reduced to peak energy data, which can be easily managed as input by neural networks. The method was applied to the analysis of gamma-ray spectra composed of mixed radioisotopes and the spectra of uranium ores. Radioisotope identification was successfully achieved. |
書誌情報 |
Nuclear Instruments & Methods in Physics Research Section A
巻 484,
p. 557-563,
発行日 2002-05
|
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |